On integrable conservation laws.
نویسندگان
چکیده
We study normal forms of scalar integrable dispersive (not necessarily Hamiltonian) conservation laws, via the Dubrovin-Zhang perturbative scheme. Our computations support the conjecture that such normal forms are parametrized by infinitely many arbitrary functions that can be identified with the coefficients of the quasi-linear part of the equation. Moreover, in general, we conjecture that two scalar integrable evolutionary partial differential equations having the same quasi-linear part are Miura equivalent. This conjecture is also consistent with the tensorial behaviour of these coefficients under general Miura transformations.
منابع مشابه
Classification of integrable hydrodynamic chains and generating functions of conservation laws
New approach to classification of integrable hydrodynamic chains is established. Generating functions of conservation laws are classified by the method of hydrodynamic reductions. N parametric family of explicit hydrodynamic reductions allows to reconstruct corresponding hydrodynamic chains. Plenty new hydrodynamic chains are found.
متن کاملConservation Laws for Some Systems of Nonlinear Partial Differential Equations via Multiplier Approach
The conservation laws for the integrable coupled KDV type system, complexly coupled kdv system, coupled system arising from complex-valued KDV in magnetized plasma, Ito integrable system, and Navier stokes equations of gas dynamics are computed by multipliers approach. First of all, we calculate the multipliers depending on dependent variables, independent variables, and derivatives of dependen...
متن کاملAsymmetric Integrable Quad-graph Equations
Integrable difference equations commonly have more low-order conservation laws than occur for non-integrable difference equations of similar complexity. We use this empirical observation to sift a large class of difference equations, in order to find candidates for integrability. It turns out that all such candidates have an equivalent affine form. These are tested by calculating their algebrai...
متن کاملExact solutions and conservation laws of a coupled integrable dispersionless system
In this paper we study the coupled integrable dispersionless system (CIDS), which arises in the analysis of several problems in applied mathematics and physics. Lie symmetry analysis is performed on CIDS and symmetry reductions and exact solutions with the aid of simplest equation method are obtained. In addition, the conservation laws of the CIDS are also derived using the multiplier (and homo...
متن کاملNonlocal conservation laws for supersymmetric KdV equations
The nonlocal conservation laws for the N=1 supersymmetric KdV equation are shown to be related in a simple way to powers of the fourth root of its Lax operator. This provides a direct link between the supersymmetry invariance and the existence of nonlocal conservation laws. It is also shown that nonlocal conservation laws exist for the two integrable N=2 supersymmetric KdV equations whose recur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Mathematical, physical, and engineering sciences
دوره 471 2173 شماره
صفحات -
تاریخ انتشار 2015